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Abstract— This paper proposes a method to
solve global optimization problems over a multi-
agent network, where the objective function, pos-
sibly subject to global constraints, is not analyt-
ically known, but can only be evaluated at any
query point. It is assumed that the cost function
to be minimized is the sum of local cost functions,
each of which can be evaluated by the associ-
ated agent only. The proposed algorithm asks the
agents at each iteration first to fit a surrogate
function to local samples, and subsequently to
minimize, in a cooperative fashion, an acquisition
function, in order to generate new samples to
query. In this paper we build the acquisition func-
tion as the sum of the local surrogates, in order to
exploit the knowledge of these estimates, plus an-
other term that drives the minimization procedure
towards unexplored regions of the feasible space,
where better values of the objective function might
be present. The proposed scheme is a distributed
version of the existing algorithm GLIS (GLobal
optimization based on Inverse distance weighting
and Surrogate radial basis functions), and share
with it the same low-complexity and competi-
tiveness, with respect to, for instance, Bayesian
optimization. Experimental results on benchmark
problems and on distributed calibration of Model
Predictive Controllers (MPC) for autonomous driv-
ing applications demonstrate the effectiveness of
the proposed method.

Index Terms— Black-box optimization,
distributed optimization, Model Predictive Control,
multi-agent networks, surrogate models

I. INTRODUCTION

Active learning algorithms for black-box global
optimization aim to minimize (or, equivalently, max-
imize) an expensive-to-evaluate objective function
f(x), whose analytical expression is typically not
available and can only be evaluated through experi-
ments or simulations. Different active learning algo-
rithms for black-box optimization with a minimum
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amount of function evaluations have been proposed
in the last decades. The most popular method is
Bayesian Optimization (BO) [1], which relies on
successively constructing a probabilistic surrogate
function (typically, a Gaussian Process) approximat-
ing the objective f(x). The surrogate is then used at
each iteration of BO to select the next point where to
query f(x), by trading-off exploitation (searching for
values of x where f(x) is expected to be optimal)
and exploration (searching for points x for which
f(x) is highly uncertain). The same rationale is also
adopted by other active-learning based approaches
for black-box global optimization [2], [3], [4], [5],
[6]. Examples and applications of active learning
for black-box global optimization include material
and drug design [7], [8]; calibration of controller
parameters [9], [10]; tuning of hyper-parameters for
machine learning algorithms and choice of neural
network architectures in deep learning [11], [12], just
to cite a few.

In this paper, we develop a distributed version of
the GLIS algorithm, recently developed by one of the
authors in [5]. The need of distributed active learning
algorithms for black-box optimization comes from
the recent research interest in networked multi-agent
systems [13], [14], [15]. Network-structured prob-
lems can be found in several engineering areas,
including swarm robotics (e.g., distributed learning,
flock control), distributed machine learning (e.g.,
logistic regression, dictionary learning, tensor fac-
torization), networked information processing (e.g.,
graph signal processing, parameters estimation, de-
tection, and localization), communication networks
(e.g., resource allocation in multi-cellular systems),
sensor networks, data-based networks (i.e., Face-
book, Twitter, Google), and other areas. The com-
monality of such applications is that they need to
perform a decentralized optimization; this happens
mainly because of two aspects: i) a lack of a central
controller/authority, and ii) an inherent time-varying
dynamics of the connectivity structure. Indeed, in
several applications the presence of a central con-
troller (a master node) is impractical or unattractive
for various reasons: 1) its resources may be insuffi-
cient to coordinate the whole network and communi-
cate with all the agents (e.g., limited bandwidth); 2)
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its single failure will cause the entire system to fail
(robustness concerns); 3) privacy and confidentiality
of the local information of the agents can not be
preserved; 4) some of the agents in the network
might be low-power devices that can communicate
only with nodes in their physical proximity, making
unfeasible the existence of a star topology (or a
spanning tree). Furthermore, additional advantages
of distributed systems is their inherent flexibility:
the network topology and connectivity may easily
be time-varying due, e.g., to agents mobility, link
failures, or power outage.

The main idea of GLIS is to recursively build a
surrogate of the objective function f(x) as a linear
combination of a Radial Basis Function (RBF),
whose parameters are estimated by quadratic pro-
gramming. The acquisition function used to select
the query point x at each iteration of GLIS is then
constructed as a weighted sum of the surrogate and
of an Inverse Distance Weighting (IDW) function
that is used to promote exploration of the input
space. In the distributed version of GLIS presented
in this paper, called D-GLIS, we consider a dis-
tributed black-box optimization problem in which N
agents attempt optimizing a global separable objec-
tive given by the sum of local objectives fi(x), i.e.,
f(x) =

∑N
i=1 fi(x). Following the GLIS approach,

at each iteration of D-GLIS, the i-th agent updates
a surrogate f̂i of its local objective fi based on
its current estimate of the surrogate f̂i. Then, each
agent optimizes a local acquisition function to find
the next point to query locally. The local acquisition
function consists of the combination of a surrogate of
the global objective f(x) and a local IDW function
promoting the exploration of areas not yet explored
by the i-th agent.

In this paper, we refer to distributed black-box
optimization in terms of:

• the experiments performed by the agents. In
fact, the input space is cooperatively explored
by the agents, with the final goal of mini-
mizing the global objective f(x). Unlike other
approaches for multi-agent learning [16], [17],
[18], [19], we assume that the agents do not
share information regarding their local objective
fi nor the corresponding surrogate f̂i;

• the optimization of the acquisition function min-
imized by each agent to select its query point x
where to evaluate fi(x). This requires to opti-
mize a local acquisition function which includes
the global surrogate

∑N
i=1 f̂i(x). Since each

agent builds its own surrogate, and this infor-
mation is not shared among the agents, D-GLIS
relies on decentralized consensus/optimization
schemes. This allows the agents to cooperate
over a network in order to achieve a global
performance objective (e.g., the global mini-
mization of f(x)), by exchanging a limited

amount of local information with their one-hop
neighbors only.

The paper is organized as follows. Section II
describes the problem formulation and summarizes
the fundamental assumptions. Section III presents
the proposed distributed learning scheme D-GLIS.
Section IV discusses the building blocks of D-
GLIS that lie in the field of distributed optimization.
Section V presents numerical results obtained in
applying D-GLIS for solving a set of benchmark
global optimization problems in a distributed way,
and for the decentralized calibration of an MPC for
autonomous driving. Finally, some conclusions and
possible future directions are drawn in Section VI.

II. PROBLEM FORMULATION

Consider a network composed by N computing
units (agents). We address the problem of solving
the following optimization problem:

x⋆ = argmin
x∈X

f(x), (1)

where x ∈ Rn and X ⊆ Rn is the set of feasibility
which is supposed to be known. We assume that the
objective function f : Rn → R is separable:

f(x) ≜
N∑
i=1

fi(x), (2)

where fi : Rn → R is the local cost function of the
i-th agent. We suppose that:

• the analytical expression of the local functions
fi (with i = 1, . . . , N ) and their corresponding
gradients are not available, and fi can only be
observed by the i-th agent through the evalua-
tion of fi(x) at any selected x ∈ X , possibly
in a noisy way. More specifically, the agent
measures y = fi(x) + ϵ of fi(x), where ϵ is
an unknown error that can change from one
evaluation to another;

• each agent performs its own function evaluation
fi(x), without sharing this information with the
other agents. At the same time, the agents co-
operate to meet the global objective of solving
problem (1);

• evaluating fi(x) is expensive, and thus prob-
lem (1) needs to be solved within a limited
number of function evaluations.

As an example, f(x) can be a global performance
index, which is given by the average of the local
performance indexes fi(x) of each agent. The agents
might not provide information on the local function
evaluations fi(x) they performed for several reasons,
such as for privacy issues, reduction of communica-
tion costs, lack of a central coordinator (master), etc.

The communication among the agents is mod-
eled as a fixed, directed weighted graph G =
({1, . . . , N} , E ,A), where {1, . . . , N} is the set of
the vertices/agents, E ⊆ {1, . . . , N} × {1, . . . , N}
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is the set of edges/communication links, and A ∈
RN×N is the weighted adjacency matrix of the
graph. The edge (i, j) ∈ E models the fact that agent
i can send a message to agent j. A is compliant with
the topology described by E , that is to say, being αij
the (i, j)−entry of A, then αij > 0 if (i, j) ∈ E , and
αij = 0 otherwise. In the rest of this work it will be
assumed that i) G is strongly-connected, and ii) A is
doubly stochastic. These are two common minimal
assumptions (see, for example, [20], [21]) ensuring
that the information of each agent influences the
information of any other agent infinitely often in time
(connectivity). Finally, we denote by Ni the set of
in-neighbors of node i in the fixed graph G, i.e.,
Ni ≜ {j ∈ {1, . . . , N} |(j, i) ∈ E}. The proposed
work can easily be adapted to work on undirected
graphs too.

In the following section, we describe a distributed
variant of the GLIS algorithm [5], called D-GLIS, to
solve the global problem (1) through a decentralized
strategy relying on the communication graph G and
based on active learning.

III. D-GLIS

We propose an algorithm to find the optimal so-
lution x⋆ of problem (1) in an iterative way, through
the cooperation of the N agents. At each iteration of
the algorithm, one agent, selected cyclically accord-
ing to a round-robin scheme, selects the new point
x where to perform the function evaluation fi(x),
with the cooperation of all the other agents. The
main features of D-GLIS, which differentiate it from
GLIS, are the following:

• at each iteration, one agent, selected in a cyclic
way, say the i-th agent, constructs a local ac-
quisition function ai : Rn → R in order to
compute the next point x where to evaluate its
own local function fi(x), using local informa-
tion extracted from the dataset Di and global
information shared through the communication
network;

• the optimization of the aforementioned local
acquisition functions ai requires cooperation
among the agents, in order to collect, at the
same time, information regarding the global
cost function f(x), and it is thus performed
in a distributed way, exchanging only limited
amount of data among the agents.

A. Local surrogate functions

Assume that each agent i has collected a local
dataset Di = {xj , yj}Mi

j=1 of length Mi, where yj
is the noisy observation of f(xj). Because of the
assumptions above, Di is not shared with the other
agents.

Among many possible choices to construct the
surrogate f̂i approximating the true unknown local

objective fi for each agent i = 1, . . . , N , we
adopt the following weighted linear combination of
RBFs [2], [22], according to the original version of
GLIS [23]:

f̂i(x) =

Mi∑
k=1

β
(i)
k ϕ(ϵd(x, xk)), (3a)

where ϕ : R → R is an RBF, with d(x, xk)
being any distance function between x and xk
and ϵ > 0 a scalar hyper-parameter defining the
shape of the RBF. The unknown coefficients β(i) =

[β
(i)
1 . . . β

(i)
Mi

]′ are determined by fitting the model
f̂i(x) to the dataset Di in order to minimize the
regularized squared error:

β(i) = argmin
β(i)

Mi∑
k=1

∥∥∥∥∥yk −
Mi∑
k=1

β
(i)
k ϕ(ϵd(x, xk))

∥∥∥∥∥
2

(3b)

+ γ
∥∥∥β(i)

k

∥∥∥2 . (3c)

Some RBFs commonly used are ϕ(ϵd) = 1
1+(ϵd)2

(inverse quadratic), ϕ(ϵd) = e−(ϵd)2 (squared ex-
ponential kernel), and ϕ(ϵd) = (ϵd)2 log(ϵd) (thin
plate spline), with hyper-parameter ϵ tuned through
cross-validation.

Once local surrogate functions f̂i are estimated,
the surrogate f̂ of the global objective f is simply
given by:

f̂(x) =

N∑
i=1

f̂i(x). (4)

If the global surrogate f̂ were known to all agents,
it could be in principle minimized in order to find
the new sample xT+1 at iteration T + 1 of D-
GLIS. However, two issues arise. First, we assume
that the agents do not share their local surrogates
f̂i. Thus, distributed algorithms must be adopted
to minimize f̂ . This point will be discussed in
Section IV. The second issue is due to the fact
that, by considering only the surrogate f̂ , we only
exploit the current available observations. Thus, the
global minimum of problem (1) can be missed as the
surrogate is not guaranteed to well approximate the
true objective f in unexplored regions of the input
domain X . Therefore, a term promoting exploration
of the input space X must be considered, which
should be different for each agent, as the agents may
explore the input space in different ways. This point
is discussed in the following paragraph.

B. Local inverse distance weighting functions

According to [5], the inverse distance weighting
(IDW) function is used to promote exploration. In
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particular, for the i-th agent, the IDW function is
defined as

zi(x) =

 0 x ∈ {x1, . . . , xMi
}

tan−1

(
1∑Mi

j=1 wj(x)

)
otherwise

(5)
where wj(x) = 1

∥x−xj∥2 and x1, . . . , xMi
are the

datapoints contained in Di. Clearly, z(x) = 0 for
all inputs already tested by the agent and z(x) > 0
in Rn \ {x1, . . . , xMi

}. Furthermore, the value of zi
increases as the (sum of the) distances between x and
the already tested inputs {x1, . . . , xMi

} increases.

C. Local acquisition functions

Given an exploration hyper-parameter δ ≥ 0, the
local acquisition function ai : X → R is constructed
in order to balance exploration and exploitation.
Specifically, given the global surrogate f̂ (unknown
to agent i), define ai as follows:

ai(x) ≜
f̂(x)

∆f̂
− δzi(x), (6)

where ∆f̂ is the range of the surrogate f̂ , i.e.,

∆f̂ ≜ max
x∈X

f̂(x)−min
x∈X

f̂(x)

and is used in (6) as a normalization factor to ease
the selection of the exploration parameter δ ∈ (0, 1].

At each iteration of D-GLIS, one agent, say agent
i, i = 1, . . . , N , is selected in a round-robin fashion
and the input parameter xi,∗ to test for this agent is
computed, according to GLIS, as the solution of the
optimization problem:

xi,∗ = argmin
x∈X

ai(x). (7)

It is worth noticing that in constructing the acqui-
sition function ai in (6) (or equivalently, in selecting
the next point to test) the global surrogate f̂ is
considered by the i-th agent, while exploration is
driven by a local IDW zi. This is because the agents
should cooperate to optimize the global objective
f , while each agent should also evaluate its local
objective fi through its own exploration of the input
domain X .

D. Iterative optimization

Once the new input xi,∗ is selected, i) the i-
th agent evaluates yi = fi(x

i,∗) + ϵ, ii) the local
surrogate f̂i and IDW functions zi are updated, iii)
a new agent j is selected. This procedure is iter-
ated until a maximum number of iterations Tmax is
reached. Finally, the optimal solution x⋆ is computed
by only minimizing the final global objective f̂ ,
thus switching off the exploration term. The main
steps of the D-GLIS approach are summarized in
Algorithm 1.

Algorithm 1 D-GLIS
Inputs: maximum number of function evaluations
per agent Nmax; exploration parameter δ; constraint
set X ; initial datasets Di = {xj , yi}Mi

j=1, and initial
surrogate functions f̂i -constructed from Di- for all
agents i = 1, . . . , N .

1: repeat
2: select agent i according to a cyclic round-

robin rule
3: build the IDW function zi in (5) from
{xj}Mi

j=1

4: define the local acquisition function ai in (6)
5: compute xi,∗ = arg minx∈X ai(x) via dis-

tributed optimization (Section IV)
6: evaluate yi,∗ = f(xi,∗) + ϵ
7: update the local dataset Di ← Di ∪
{xi,∗, yi,∗}

8: Mi ←Mi + 1
9: estimate a new local surrogate function f̂i(x)

based on Di
10: construct the global surrogate f̂(x) as in (4)
11: until maximum numbers of iterations Tmax =

NNmax is reached
12: compute consensus x∗ = arg minx

∑N
i=1 f̂i(x)

via distributed optimization (Section IV)
Output: consensus x⋆.

Remark The D-GLIS implementation described in
Algorithm 1 is a sequential version, meaning that
at each iteration one agent i is selected in a cyclic
way for computing its acquisition function ai and
for consequently updating its dictionary Di. Differ-
ent implementations are possible, for example it is
possible to consider a parallel version where all the
agents compute at each iteration their acquisition
functions, solve in a distributed way at the same time
N optimization problems as (7), and finally update
their datasets Di with the just computed new points.

IV. DISTRIBUTED OPTIMIZATION

In the D-GLIS algorithm described in the previ-
ous section, the generic agent i optimizes its own
acquisition function ai(x), which also depends on
the local surrogate functions f̂j (with j ̸= i) of the
other agents. However, local surrogates of the other
agents are assumed not to be known by the i-th agent.
This requires to use distributed algorithms, where all
the agents communicate with the others to optimize
the local acquisition function ai of the i-th agent.

In order to solve (7) in a cooperative fashion,
the agents leverage the GTAdam [24] distributed
algorithm. GTAdam is a distributed version of the
popular Adam algorithm [25]. Adam is a gradient-
like optimization scheme that solves problems in the
form of (7) in a centralized way. At each iteration
k ∈ N+ of Adam, a solution estimate xk is updated
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by computing a descent direction which is properly
adjusted using the gradient history. More specifically,
an estimate of the mean and of the variance of the
gradient sequence

{
∇ai(xk)

}
k∈N+

(i.e., the first and
the second momentum of the gradient sequence),
respectively denoted as mk and vk, are computed at
each iteration k, and properly combined in order to
obtain the descent direction for the update of xk. The
use of the momenta mk and vk are very effective in
making Adam a fast optimization method [25], [26],
[27].

A pseudo-code of Adam is shown in Algorithm 2,
with ⊙ denoting the Hadamard product, ΠX (·) the
Euclidean projection onto the constraint set X , and
mk√
vk+ϵ

is an element-wise ratio.

Algorithm 2 Adam algorithm for problem (7)
Inputs: step-size α > 0; hyperparameters β1, β2 ∈
(0, 1); constraint set X ; iteration counter k = 0;
random starting point x0 ∈ X ; standard initialization
m0 = v0 = 0, g0 = ∇ai(x0).

1: repeat
2: compute the first momentum mk+1 =
β1m

k + (1− β1)gk
3: compute the second momentum vk+1 =
β2v

k + (1− β2)gk ⊙ gk
4: update the estimate solution xk+1 = xk −
α mk+1√1−β2

(1−β1)
√
vk+1+ϵ

5: ensure that the estimate solution is feasible
xk+1 = ΠX (xk+1)

6: compute the gradient vector gk+1 =
∇ai(xk+1)

7: update the iteration counter k ← k + 1
8: until maximum number of iterations is reached

Output: solution estimate xi,∗ = xk.

GTAdam [24] is the distributed version of Adam,
that has the purpose of solving problems in the form
of (7) over a network of agents by means of local
computation and communication only, without any
central coordinator. Furthermore, in this distributed
setting it is assumed that f̂ (which is one of the
term in (7)) is not globally known, but each agent
i = 1, . . . , N only knows f̂i. In order to make
Adam distributed, the renowned gradient tracking
algorithm [28], described next, is encapsulated into
the Adam framework. In the gradient tracking al-
gorithm, each agent i, at any iteration k, maintains
and updates two local states ski and xki . While ski
is an estimate of the gradient of the whole function
to be minimized, which is updated at each iteration
according to a dynamic tracking mechanism, xki is a
solution estimate, which is updated at each iteration
firstly by moving along the estimated gradient direc-
tion ski , and secondly by performing a consensus step
to force asymptotic agreement among the solution
estimates of all agents. It is important to note that,

according to the gradient tracking algorithm, the
only communication requirement is, for each agent,
to transmit ski and xki to its own out-neighbors
at each iteration. A pseudo-code of the gradient
tracking algorithm is shown in Algorithm 3 from the
perspective of agent i only; it is here assumed that an
estimate for ∆f̂ is available, and it will be described
later in this section how to compute it. Note that the
pseudo-code of Algorithm 3 from the perspective of
an agent j ̸= i remains the same, except for the fact
that the local gradient gkj = 1

∆f̂
∇f̂j(xkj ) does not

include the IDW function zi.

Algorithm 3 Gradient tracking for problem (7) (from
the perspective of agent i)

Inputs: stepsize α > 0; normalization factor ∆f̂ >
0; exploration parameter δ ∈ (0, 1]; constraint
set X ; iteration counter k = 0; random starting
point x0i ∈ X ; standard initialization s0i = g0i =

∇
(
f̂i(x

0
i )

∆f̂
− δzi(x0i )

)
.

1: repeat
2: update the estimate solution xk+1

i =∑
j∈Ni

aijx
k
j − αski

3: ensure that the estimate solution is feasible
xk+1
i = ΠX (xk+1

i )
4: compute the local gradient vector gk+1

i =

∇
(
f̂i(x

k+1
i )

∆f̂
− δzi(xk+1

i )
)

5: update the gradient estimate sk+1
i =∑

j∈Ni
aijs

k
j + gk+1

i − gki
6: update the iteration counter k ← k + 1
7: until maximum numbers of iterations is reached

Output: solution estimate xi,∗ = xki .

GTAdam combines Algorithm 2 with Algorithm
3 for solving (7) in a distributed fashion. Again,
each agent i knows only a local part f̂i of the sum-
utility f̂ and can communicate with its out-neighbors
only. In GTAdam each agent maintains four local
states: i) xki , a local estimate of the current optimal
solution xi,∗; ii) ski , a local estimate of the gradient
of the whole cost function ai; iii) mk

i , an estimate
of first momentum of ski ; and iv) vki , an estimate
of the second momentum of ski . The agents need to
communicate among each other only sik and xki at
each iteration in order to have convergence to the
problem solution. Finally, each agent can estimate
the normalization factor ∆f̂ as ∆f̂i ≜ max

x∈Di
f̂i(x)−

min
x∈Di

f̂i(x). A pseudo-code of GTAdam is shown in

Algorithm 4 from the perspective of agent i only (as
for Algorithm 3, the pseudo-code of Algorithm 4
from the perspective of an agent j ̸= i remains the
same, except for the fact that the local gradient gkj =
1

∆f̂j
∇f̂j(xkj ) does not include the IDW function zi).
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Algorithm 4 GTAdam for problem (7) (from the
perspective of agent i)
Inputs: stepsize α > 0; exploration parameter δ ∈
(0, 1]; constraint set X ; constants for numerical ro-
bustness ϵ ∈ (0, 1), G > 0; iteration counter k = 0;
random starting point x0i ∈ X ; standard initialization
m0
i = v0i = 0, s0i = g0i = ∇

(
f̂i(x

0
i )

∆f̂i
− δzi(x0i )

)
.

1: repeat
2: compute the first momentum mk+1

i =
β1m

k
i + (1− β1)ski

3: compute the second momentum vk+1
i =

min
{
β2v

k
i + (1− β2)ski ⊙ ski , G

}
4: update the estimate solution xk+1

i =∑
j∈Ni

aijx
k
j − α

mk+1
i√

vk+1
i +ϵ

5: ensure that the estimate solution is feasible
xk+1
i = ΠX (xk+1

i )
6: compute the local gradient vector gk+1

i =

∇
(
f̂i(x

k+1
i )

∆f̂i
− δzi(xk+1

i )
)

7: update the gradient estimate sk+1
i =∑

Ni
aijs

k
j + gk+1

i − gki
8: update the iteration counter k ← k + 1
9: until maximum numbers of iterations is reached

Output: solution estimate xi,∗ = xki .

The strong connectivity assumption on G (men-
tioned in Section II) ensures that eventually the
information flow of each agent can reach any other
agent in the network, while the double stochasticity
of A guarantees that the agents asymptotically will
converge to the same stationary point (see [24] for
more details).

Note that GTAdam in D-GLIS is implemented not
only in Step 5 for solving (7) as described above,
but, similarly, in Step 12 too. The distributed opti-
mization problem in Step 12 is the same appearing
in Step 5 with the difference that the IDWs do not
appear.

V. EXAMPLES

In this section we test the D-GLIS algorithm on
standard benchmark global optimization problems
(Section V-A) and distributed design of model pre-
dictive control for autonomous driving (Section V-
B).

All our experiments were run on an Intel
i7-8665u, 1.9GHz processor, 32GB RAM, no
GPUs. Codes of D-GLIS are in Python and can be
downloaded at
https://leon.idsia.ch/lib download.
The open-source disropt library [29] is used for the
distributed operations.

A. Benchmark optimization problems
We test D-GLIS on four standard benchmark

global optimization problems, denoted as brent,

camelsixumps, hartman3 and ls. Problems
brent, camelsixumps, and hartman3 prob-
lems are defined in [30] and ls is a distributed least
square problem described in the following:

• brent: number of agents N = 3; x ∈ R2; cost
function:

f(x) = (x1 + 10)2︸ ︷︷ ︸
f1(x)

+ (x2 + 10)2︸ ︷︷ ︸
f2(x)

+ e−x
2
1−x

2
2︸ ︷︷ ︸

f3(x)

;

(8)

constraints xi ∈ [−10 10] (i = 1, 2); global
optimizer x⋆ = [−10 − 10]⊤; global optimum
f(x⋆) ≃ 0.

• camelsixumps: number of agents N = 3;
x ∈ R2; cost function:

f(x) =(4− 2.1x21 +
x41
3
)x21︸ ︷︷ ︸

f1(x)

+ x1x2︸︷︷︸
f2(x)

(9)

+ (4x22 − 4)x22︸ ︷︷ ︸
f3(x)

; (10)

constraints xi ∈ [−5 5] (i = 1, 2); global
optimizers x⋆ = [−0.0898 0.7126]⊤ and x⋆ =
[0.0898 − 0.7126]⊤; global optimum f(x⋆) =
−1.0316.

• hartman3: number of agents N = 4; x ∈ R3;
cost function:

f(x) =

4∑
i=1

−ci exp

− 3∑
j=1

aij (xj − pij)2


︸ ︷︷ ︸
fi(x)

,

(11)

with ci, aij and pij being the entries of the
matrices:

c =


1
1.2
3
3.2

 , A =


3 10 30
0.1 10 35
3 10 30
0.1 10 35

 , (12)

P =


0.3689 0.1170 0.2673
0.4699 0.4837 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

 ; (13)

constraints xi ∈ [0 1] (i = 1, 2, 3); global
optimizer x⋆ = [0.1140 0.556 0.852]⊤; global
optimum f(x⋆) ≃ −3.8628.

• ls: number of agents N = 4; x ∈ R4; cost
function:

f(x) =

4∑
i=1

∥Aix− bi∥2︸ ︷︷ ︸
fi(x)

, (14)

where Ai ∈ R100×4 and bi ∈ R100. The entries
of the matrix Ai are i.i.d. and drawn from a
Gaussian N (0, 1) distribution. The vector bi is
generated as follows: bi = Aix

⋆
i , where the
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elements of x⋆i ∈ R4 are i.i.d. and drawn from
a uniform distribution U(−1, 1). The elements
of bi and Ai are scaled by a factor 1

100 . The
constraints are: xi ∈ [−1 1] (i = 1, 2, 3, 4); the
global optimizer x⋆ and corresponding optimum
f(x⋆) depend on the random generation of the
problem and are computed through centralized
convex optimization.

We stress that the global optima are used only to
evaluate the quality of the solution obtained by D-
GLIS.

In all the experiments the agents communicate
over a fixed undirected graph G, generated using an
Erdős-Rényi random model (n, p) with p = 0.3. The
adjaceny matrix A of the graph is obtained through
a Metropolis-Hastings weight model [31].

Algorithm 1 - D-GLIS has been applied on the
four aforementioned benchmark problems, running
Algorithm 4 - GTAdam as inner distributed solver
in Step 5 and Step 12.

In all the experiments the agents start the op-
timization procedure with an initial local dataset
Di composed of Mi = 2n points, i = 1, . . . , N ,
generated uniformly at random in the feasible set.
For each outer iteration of D-GLIS, the inner solver
GTAdam runs for 1000 iterations with an initial
stepsize equal to 0.001 in hartman3, and equal
to 0.01 in the other problems. The value of the
exploration hyper-parameter δ is updated by the
agents while D-GLIS is running, according to the
following heuristic: each agent i uses in Step 5 a

value δi ≜ N

(
max
yj∈Di

yj − min
yj∈Di

yj

)
, which depends

on its current dataset Di.
Each problem is run for 20 independent Monte-

Carlo realizations and the performance of D-GLIS
is shown in Figure 1 in terms of quantiles. The
function values plotted in Figure 1 are obtained
after each outer iteration of D-GLIS, by computing
x∗ = arg minx

∑N
i=1 f̂i(x) in a distributed way,

and then evaluating f(x) in x⋆. These points have
been computed only for the purpose of monitoring
the performances of D-GLIS, but, in practice, x⋆ is
computed only once, in Step 12, when the desired
maximum number of iterations Tmax is reached.
Figure 1 shows that on all the tested problems D-
GLIS approaches towards the global optimum after
less than 80 experiments.

B. Case study: MPC for automated driving
vehicles

As a case study, we use D-GLIS to calibrate an
MPC controller for automated driving vehicles for
lane-keeping and obstacle-avoidance. This case study
was originally discussed in in [32], [33] for semi-
automatic calibration of MPC parameters through
active preference-based optimization.

The test scenario is shown in Figure 2. A Subject
Vehicle (SV) is on a one-way horizontal road with
two lanes. Unlike the case study tested in [32], [33],
we include two Obstacle Vehicles (OVs). Each OV
is placed at the center of the corresponding lane and
moves forward horizontally at a constant speed. OVs’
initial velocities and initial longitudinal positions can
vary, depending on the test scenarios. The SV is
commanded by an MPC controller to follow the
lane, and to avoid OVs (when they are within safety
distances) by changing the lane, accelerating, or
decelerating. Each calibrator (namely, agent) can pri-
oritize optimization criteria differently and conduct
various experiments. The goal is to reach consensus
among them without disclosing the specifics of their
experiments.

In the following, we provide the system descrip-
tion of the SV (the vehicle under control), the MPC
formulation, the control objectives for each agent,
and the numerical test performed.

1) System description: A simplified two-degree-
of-freedom bicycle model is implemented with the
front wheel as the reference point to describe the
vehicle kinematics and simulate the experiment:

ẋf =v cos(θ + ψ),

ẇf =v sin(θ + ψ),

θ̇ =
v sin(ψ)

L
,

(15)

where xf and wf (m) are the longitudinal and lateral
positions of the SV’s front wheel, and θ (rad) is
the yaw angle. These three variables define the state
vector s ≜ [xf wf θ]

T. The manipulated variables v
and ψ, grouped as u ≜ [v ψ]T, are the SV’s velocity v
(m/s) and steering angle ψ (rad). L (m) is the length
of the SV.

2) MPC formulation: Full state observation is as-
sumed and the control output y coincides with s. The
discrete-time state-space model resulting from (15)
is

s̃k+1=

[
1 0 −v̄k sin(θ̄k+ψ̄k)Ts
0 1 v̄k cos(θ̄k+ψ̄k)Ts
0 0 1

]
s̃k

+

[
cos(θ̄k+ψ̄k)Ts −v̄k sin(θ̄k+ψ̄k)Ts
sin(θ̄k+ψ̄k)Ts v̄k cos(θ̄k+ψ̄k)Ts

sin(ψ̄k)

L Ts
v̄k cos(ψ̄k)

L Ts

]
ũk,

ỹk = s̃k,
(16)

where Ts is the sampling time, subscript k denotes
a time step counter, and superscript tilde ·̃ and bar ·̄
are used to indicate deviation and nominal variables,
respectively, where x̃var ≜ xvar − x̄var, with xvar ∈
{sk+1, sk, vk, θk, ψk, uk, yk}.

With the prediction model (16), a linear time-
varying MPC is designed via a real-time iteration
scheme [34], [35]. At each sampling time t, the
following quadratic programming problem is solved,
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(a) brent (b) camelsixhumps

(c) hartman3 (d) ls

Fig. 1: Performances of D-GLIS in terms of quantiles on benchmark problems: function value vs. number
of iterations.

SV 1

2

Fig. 2: Test scenario for MPC calibration.

in order to compute the MPC action to be applied:

min
{ut+k|t}Nu−1

k=0

:

Np−1∑
k=0

∥∥yt+k|t − yreft+k∥∥2Qy
+

Np−1∑
k=0

∥∥ut+k|t − ureft+k∥∥2Qu
+

Np−1∑
k=0

∥∥∆ut+k|t∥∥2Q∆u
,

(17)

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Np,

umin ≤ ut+k|t ≤ umax, k = 1, . . . , Np,

∆umin ≤ ∆ut+k|t ≤ ∆umax, k = 1, . . . , Np,

ut+Nu+k|t = ut+Nu|t, k = 1, . . . , Np −Nu,
(18)

where Qy , Qu, and Q∆u are weight matrices for
the squared norms, ∆ut+k|t is defined as ∆ut+k|t ≜
ut+k|t−ut+k−1|t, yref and uref are, respectively, the
reference values of control outputs and inputs during
the experiments, and Nu and Np are, respectively,
the control and prediction horizon values.

3) Test scenarios and control objectives: In the
following we discuss the MPC parameters to be
tuned, and specify the constraints both for the input
manipulated variables and for the controller outputs
of the test scenarios.

We consider the following MPC parameters to cal-
ibrate: control and prediction horizons Nu and Np,
respectively; and the diagonal elements of the weight
matrix Q∆u ≜

[ qu11 0
0 qu22

]
. These parameters are

tuned within the following intervals: Np ∈ [10 30];
Nu is taken as a fraction ϵc of Np, with ϵc ∈ [0.1 1];
and log(qu11), log(qu22) ∈ [−5 3]. The rest of the
MPC parameters are fixed and not optimized, with
sampling time Ts = 0.085 s, Qy =

[
0 0 0
0 10 0
0 0 1

]
, and

Qu = [ 1 0
0 1 ].

The reference value vref of the manipulated vari-
able v is set to 50 km/h. During the experiments,
v can fluctuate within the interval [1 90] km/h,
with its rate of change v̇ ∈ [−4 4] m/s2. The



CANNELLI et al.: MULTI-AGENT ACTIVE LEARNING FOR DISTRIBUTED BLACK-BOX OPTIMIZATION (OCTOBER 2022) 9

steering angle ψ can vary between -45◦ and 45◦

at a rate within [−60 60]◦/s, with its reference
value ψref = 0◦. As for the control commands:
xf ∈ [-∞,∞] m; wf ∈ [−0.6 3.6] m to ensure
that SV is within the road; and wref

f can take the
two values 0 m or 3 m (namely, center of lane 1 or
lane 2, respectively), depending on which lane the
SV is on. The yaw angle θ is constrained to belong
to the interval [−90 90]◦, and θref = 0◦.

The following three objectives have been used to
specify how the calibrated MPC controller should
direct the SV to maintain lane position, prevent
crashes with OVs and guarantee passengers’ comfort:
i) minimize the variation of the velocity of the SV;
ii) minimize the variation of the steering angle of
the SV; iii) avoid collision between SV and OVs.
The mathematical expressions used to emulate the
aforementioned objectives are listed below:

fmult1 =
1

Ntotal

Ntotal∑
k=1

∣∣∣∣∣vk − vrefkvrefk

∣∣∣∣∣,
fmult2 =

1

Ntotal

Ntotal∑
k=1

∣∣∣∣∣ψk − ψref
k

ψref
k + 0.1

∣∣∣∣∣,
fmult3 = 1000 Icollision,

(19)

where Ntotal = 2
⌈
texp
2Ts

⌉
is the total number of dis-

cretization steps throughout the whole experiment,
texp is the experiment duration, and Icollision denotes
an indicator function which takes value 1 if SV and
any OV collide, 0 otherwise.

We consider the presence of 4 calibrators (agents)
for the case study, each one weighting fmult1 and
fmult2 with a different order of priority. The ob-
jective function fi for agent i (with i = 1, 2, 3, 4)
is defined below and normalized to the range of
[−2.5 2.5]:

f1 =

5(1−exp(−0.5fmult1− 0.5fmult2− fmult3))−2.5,

f2 =

5(1−exp(−0.8fmult1− 0.2fmult2− fmult3))−2.5,

f3 =

5(1−exp(−0.3fmult1− 0.7fmult2− fmult3))−2.5,

f4 =

5(1−exp(−0.6fmult1− 0.4fmult2− fmult3))−2.5.
(20)

Furthermore, each agent assesses the MPC con-
troller using different initial OV settings (see Ta-
ble I), i.e., different simulation experiments are per-
formed by the agents. The calibration goal is to reach
an agreement among them so that the MPC controller
works well under diverse testing circumstances. For
this case study, every experiment is simulated for
texp = 30 s.

TABLE I: Initial test conditions of OVs for each
agent (x0f,OV: the initial longitudinal position of the
OVs; v0OV: the initial velocity of the OVs).

Agent x0
f,OV [m] v0OV [km/hr]

OV1 OV2 OV1 OV2

1 10 33 38 40
2 15 17 30 48
3 20 60 40 42
4 9 20 60 45

4) Calibration process: The calibration of the
MPC parameters Np, ϵc, log(qu11), and log(qu22)
have been performed by running D-GLIS with the
following configuration:

• the i-th agent (with i = 1, 2, 3, 4) only knows
the local function fi(x), defined above.

• the agents communicate over a fixed undirected
graph G, generated using an Erdős-Rényi ran-
dom model (n, p) with p = 0.3. The adjaceny
matrix A of the graph is obtained through the
Metropolis-Hastings weight model.

• Algorithm 4 - GTAdam has been used as inner
distributed solver in Step 5 and Step 12.

• the i-th agent (with i = 1, 2, 3, 4) has an initial
local dataset Di composed of Mi = 2 feasible
points generated uniformly at random.

• for each iteration of D-GLIS, the inner solver
GTAdam runs for 1000 iterations with an initial
stepsize equal to 0.001.

• the value of the hyper-parameter δ is updated
while D-GLIS is running, according to the same
heuristic described in Section V-A.

• D-GLIS terminates after Tmax = 80 iterations.
5) Results: D-GLIS provides MPC parameters

with satisfactory performance with 2 initial random
experiments and 14 active learning experiments for
each agent (64 experiments in total). The optimized
parameters of [ϵc, Np, log(qu11), log(qu22)] are x⋆ =
[0.10, 20, -4.25, -5]⊤.

We show how the performance of the MPC con-
troller is enhanced by using the optimal MPC pa-
rameters by comparing it to its initial performance
by using instead one of the initial random MPC
parameters x̄ = [0.86 27 1.8 0.23]⊤, retrieved from
the dataset D3. This MPC parameter vector x̄ is used
to simulate the experiments of all four agents, only
with the purpose of comparing performance results.

The objective function evaluations for the ex-
periments simulated by the four agents with the
initial and optimal MPC parameters are, respectively,
{f1(x̄) = −0.9079, f2(x̄) = −0.6444, f3(x̄) =
−1.426, f4(x̄) = −0.9181} and {f1(x⋆) = −2.249,
f2(x

⋆) = −2.384, f3(x⋆) = −2.162, f4(x⋆) =
−2.292}. The MPC controller with the optimal
parameters thus obtains lower objective functions
for the experiments of every agent. In contrast, the
MPC controller with the random initial parameters
performs more inconsistently among experiments
of different agents and leads to higher function
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evaluations. More specifically, the MPC controller
with the initial parameters performs poorly for the
experiments by Agents 1, 2, and 4 and mediocrely
for the experiments by Agent 3. These observations
are also highlighted in Figure 3, where the evolution
of the two manipulated variables (velocity v and
steering angle ψ) for each agent is plotted. From
Figure 3, it is also observed that, compared to the
MPC controller with the optimal parameters, the
MPC controller with the initial parameters generally
exhibits more aggressive and frequent fluctuations
in both manipulated variables throughout the experi-
ment duration, whose values often also deviate from
the reference.

VI. CONCLUSIONS

This paper has proposed D-GLIS, an algorithm
to solve cooperatively, over a distributed network
of agents, global optimization problems where the
cost function is separable and expensive to evaluate,
subject possibly to global constraints (known and
inexpensive to evaluate). The proposed scheme, con-
trarily to many other approaches for black-box op-
timization, e.g., Bayesian optimization, is driven by
deterministic arguments (the IDW function), which
has the purpose of encouraging the investigation of
unexplored regions of the feasible space. Differently
from its predecessor GLIS, D-GLIS is a distributed
scheme, meaning that a network of agents coop-
erate to solve the common optimization problem
through distributed experiments, exchanging among
themselves only fundamental information about the
minimization procedure.

Current research directions are devoted to: 1)
the extension of D-GLIS to problems where the
constraints can also be local/private and, further-
more, expensive to evaluate; and 2) developing a
preference-based version of the proposed approach,
always distributed, where the agents can not evaluate
the cost function, but it is only possible to obtain
preferences, as such “this is better than that”, be-
tween two candidate points.
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